Calculus of Variations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

denoising medical images using calculus of variations

we propose a method for medical image denoising using calculus of variations and local variance estimation by shaped windows. this method reduces any additive noise and preserves small patterns and edges of images. a pyramid structure-texture decomposition of images is used to separate noise and texture components based on local variance measures. the experimental results show that the proposed...

متن کامل

The Calculus of Variations

The lectures focused on the Calculus of Variations. As part of optimization theory, the Calculus of Variations originated in 1696 when Johann Bernoulli posed the brachistochrone problem. This problem related to the curve between two points along which a ball would require minimal time of travel to reach the bottom. This problem was solved by many different mathematicians of the time, some of wh...

متن کامل

Calculus of Variations

We consider the following obstacle problem for Monge-Ampere equation detDu = fχ{u>0} and discuss the regularity of the free boundary ∂{u = 0}. We prove that ∂{u = 0} is C if f is bounded away from 0 and ∞, and it is C if f ≡ 1.

متن کامل

Calculus of Variations

Convex functions in Euclidean space can be characterized as universal viscosity subsolutions of all homogeneous fully nonlinear second order elliptic partial differential equations. This is the starting point we have chosen for a theory of convex functions on the Heisenberg group. Mathematics Subject Classification (1991): 49L25, 35J70, 35J67, 22E30.

متن کامل

Calculus of Variations

Abstract. With a map f : Ω → R,Ω ⊂ R, that belongs to the John Ball classAp,q(Ω) where n − 1 < p < n and q ≥ p/(p − 1) one can associate a set valued map F whose values F (x) ⊂ R are subsets ofR describing the topological character of the singularity of f at x ∈ Ω. Šverak conjectured that Hn−1(F (S)) = 0, where S is the set of points at which f is not continuous andHn−1 is the Hausdorff measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature

سال: 1954

ISSN: 0028-0836,1476-4687

DOI: 10.1038/1731156a0